
P A G E P R O O F S

2
Mathematical Foundations

Behind Latent Semantic
Analysis

Dian I. Martin
Small Bear Technical Consulting, LLC

Michael W. Berry
University of Tennessee

Latent semantic analysis (LSA)is based on the concept of vector space mod-
els, an approach using linear algebra for effective yet automated informa-
tion retrieval. The vector space model (VSM) was developed to handle text
retrieval from a large information database where the text is heterogeneous
and the vocabulary varies. One of the first systems to use a traditional VSM
was the System for the Mechanical Analysis and Retrieval of Text (SMART;
Buckley, Allan, & Salton, 1994; Salton & McGill, 1983). Among the notable
characteristics of the VSM, used by SMART, is the premise that the meaning
of documents can be derived from its components or types. The underlying
formal mathematical model of the VSM defines unique vectors for each
type and document, and queries are performed by comparing the query
representation to the representation of each document in the vector space.
Query-document similarities are then based on concepts or similar seman-
tic content (Salton, Buckley, & Allan, 1992).

35

P A G E P R O O F S

LSA is considered a truncated vector space model that represents types
and documents in a particular high-dimensional type-document vector
space. The truncated VSM, VSMk, used in LSA, uncovers the underlying or
“latent” semantic structure in the pattern of type usage to define docu-
ments in a collection. As mentioned in chapter 1 (Landauer, this volume), a
document is defined as the sum of the meaning of its types. By using the
truncated singular value decomposition, LSAexploits the meaning of types
by removing “noise” that is present due to the variability in type choice.
Such noise is evidenced by polysemy (multiple meanings for one word)
and synonymy (many words describing the same idea) found in docu-
ments (Deerwester, Dumais, Furnas, Landauer, & Harshman, 1990; Furnas,
Landauer, Gomez, & Dumais, 1987). As a result, the similarity of docu-
ments is no longer dependent on the types they contain, but on the semantic
content; therefore, documents deemed relevant to a given query do not nec-
essarily contain the types in the query (Dumais, 1991; Letsche & Berry,
1997).

This chapter describes the vector space model and the mathematical
foundations that LSAis based on both in broad concepts for readers seeking
general understanding and finer detail for readers interested in the specif-
ics. Creating the vector space model for latent semantic analysis is dis-
cussed first, which is a theoretical explanation of how a type-by-document
input matrix derived from a document collection is decomposed into a vec-
tor space of type and document vectors by the singular value decomposi-
tion (SVD). It is by using the truncated SVD that LSA obtains the meanings
of types and documents. In the next section, the actual computation of the
vector space for LSA is described in fine detail. The computation required
to convert an input matrix into vectors is complex, and this section is for
those readers interested in understanding the sophisticated mathematical
calculations of the “Lanczos algorithm with selective reorthogonalization”
that is used to build the type and document vectors. Then, use of the trun-
cated vector space model for LSA is covered. This section describes the ba-
sic manipulations of the vector space. Subsequent chapters of this volume
describe, in detail, the many interesting and important applications that
use the vector space model of LSA.

CREATING THE VECTOR SPACE MODEL
FOR LATENT SEMANTIC ANALYSIS

The Input Matrix

To create a vector space model for latent semantic analysis, a type-by-docu-
ment matrix must first be constructed. The rows of the input matrix are
comprised of types, which are the individual components that make up a

36 MARTIN AND BERRY

P A G E P R O O F S

document. Typically, these individual components are terms, but they can
be phrases or concepts depending on the application. The columns of the
input matrix are comprised of documents, which are of a predetermined
size of text such as paragraphs, collections of paragraphs, sentences, book
chapters, books, and so on, again depending on the application. A docu-
ment collection composed of n documents and m types can be represented
as an m by n type-by-document matrix A. Often m >> n, the number of types
is greater than the number of documents, however, there are cases where
this is reversed and n >> m, for example, when collecting documents from
the Internet (Berry & Browne, 2005; Berry, Drmac, & Jessup, 1999). Initially,
each column of the matrix A contains zero and nonzero elements, aij. Each
nonzero element, aij, of the matrix A is the frequency of ith type in the jth
document. Asmall example of a document collection and its corresponding
input type-by-document matrix with type frequencies can found in Tables
2.1 and 2.2 (Witter & Berry, 1998). In this example, documents are the actual
title, consisting only of italicized keywords. Documents labeled M1–M5 are
music-related titles, documents labeled B1–B4 are baking-related titles, and
no document has more than one occurrence of a type or keyword.

A weighting function is generally applied to the each nonzero (type fre-
quency) element, aij, of A to improve retrieval performance (Berry &
Browne, 2005; Dumais, 1991). In retrieval, the types that best distinguish
particular documents from the rest of the documents are the most impor-
tant; therefore, a weighting function should give a low weight to a high-fre-
quency type that occurs in many documents and a high weight to types that
occur in some documents but not all (Salton & Buckley, 1991). LSA applies

2. MATHEMATICAL FOUNDATIONS 37

TABLE 2.1
Titles for Topics on Music and Baking

Label Titles

M1 Rock and Roll Music in the 1960’s

M2 Different Drum Rolls, a Demonstration of Techniques

M3 Drum and Bass Composition

M4 A Perspective of Rock Music in the 90’s

M5 Music and Composition of Popular Bands

B1 How to Make Bread and Rolls, a Demonstration

B2 Ingredients for Crescent Rolls

B3 A Recipe for Sourdough Bread

B4 A Quick Recipe for Pizza Dough using Organic Ingredients

Note. Keywords are in italics.

P A G E P R O O F S

both a local and global weighting function to each nonzero element, aij, in
order to increase or decrease the importance of types within documents (lo-
cal) and across the entire document collection (global). The local and global
weighting functions for each element, aij, are usually directly related to how
frequently a type occurs within a document and inversely related to how
frequently a type occurs in documents across the collection, respectively.
So, aij = local(i, j) * global(i), where local(i, j) is the local weighting for type i
in document j, and global(i) is the type’s global weighting (Dumais, 1991;
Letsche & Berry, 1997). Local weighting functions include using type fre-
quency, binary frequency (0 if the type is not in the document and 1 if the
type is in the document), and log of type frequency plus 1. Global weight-
ing functions include normal, gfidf, idf, and entropy, all of which basically
assign a low weight to types occurring often or in many documents. Acom-
mon local and global weighting function is log-entropy. Dumais found that
log-entropy gave the best retrieval results, 40% over raw type frequency
(Dumais, 1991). The local weighting function of log (type frequency + 1) de-
creases the effect of large differences in frequencies. Entropy, defined as 1 +

p p

n

ij ij

j

log ()

log
2

2
Â where p

tf

gf
tf

ij

ij

i

ij
= =, type frequency of type i in document

j, and gfi = the total number of times that type i appears in the entire collec-
tion of n documents, gives less weight to types occurring frequently in a
document collection, as well as taking into account the distribution of types

38 MARTIN AND BERRY

TABLE 2.2
The 10 x 9 Type-by-Document Matrix With Type Frequencies Corresponding

to the Titles in Table 2.1

Types Documents

M1 M2 M3 M4 M5 B1 B2 B3 B4

Bread 0 0 0 0 0 1 0 1 0

Composition 0 0 1 0 1 0 0 0 0

Demonstration 0 1 0 0 0 1 0 0 0

Dough 0 0 0 0 0 0 0 1 1

Drum 0 1 1 0 0 0 0 0 0

Ingredients 0 0 0 0 0 0 1 0 1

Music 1 0 0 1 1 0 0 0 0

Recipe 0 0 0 0 0 0 0 1 1

Rock 1 0 0 1 0 0 0 0 0

Roll 1 1 0 0 0 1 1 0 0

P A G E P R O O F S

over documents (Dumais, 1991). A more detailed description of the local
and global weighting functions can be found in Berry and Browne (2005)
and Dumais (1991). Table 2.3 has the local and global weighting function
log-entropy applied to each nonzero type frequency in the type-by-docu-
ment matrix given previously in Table 2.2.

Typically, the type-by-document input matrix A is considered sparse be-
cause it contains many more zero entries than nonzero entries. Each docu-
ment in the collection tends to only use a small subset of types from the type
set. Usually, only about 1% or less of the matrix entries are populated or
nonzero (Berry & Browne, 2005). In the small example in Tables 2.2 and 2.3,
approximately 25% of the matrix entries are nonzero.

Decomposition of Input Matrix Into Orthogonal
Components

Once the input matrix A is created, it is transformed into a type and document
vector space by orthogonal decompositions in order to exploit truncation of
the vectors. Transforming a matrix by using orthogonal decompositions, or or-
thogonal matrices, preserves certain properties of the matrix, including the
norms, or vector lengths and distances, of the row and column vectors that
form the m × n type-by-document input matrix A. Specifically, orthogonal ma-
trix decompositions preserve the 2-norm and the Frobenius norm of matrix A
(Golub & Van Loan, 1989; Larson & Edwards, 1988).

2. MATHEMATICAL FOUNDATIONS 39

TABLE 2.3
The 10 × 9 Weighted Type-by-Document Matrix Corresponding to the Titles

in Table 2.1

Types Documents

M1 M2 M3 M4 M5 B1 B2 B3 B4

Bread 0 0 0 0 0 .474 0 .474 0

Composition 0 0 .474 0 .474 0 0 0 0

Demonstration 0 .474 0 0 0 .474 0 0 0

Dough 0 0 0 0 0 0 0 .474 .474

Drum 0 .474 .474 0 0 0 0 0 0

Ingredients 0 0 0 0 0 0 .474 0 .474

Music .347 0 0 .347 .347 0 0 0 0

Recipe 0 0 0 0 0 0 0 .474 .474

Rock .474 0 0 .474 0 0 0 0 0

Roll .256 .256 0 0 0 .256 .256 0 0

P A G E P R O O F S

What is an orthogonal matrix? An orthogonal matrix is one with the
property of QTQ = I, where Q is an orthogonal matrix, QT is the transpose of
matrix Q (the rows and columns of Q are the columns and rows of QT), and I
is the identity matrix:

Q QT =

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1 0 0 0
0 1 0 0

0
0 1 0
0 0 0 1

K

M O O M

O

K

2.1

If Q is comprised of n column vectors, that is, Q = [q1, q2, … , qn], then for
every pair of vectors (qi, qj), taking the dot product q

i

T qj = 0 if i π j and q
i

T qj

π 0 if i = j. If two vectors satisfy the property that the dot product q
i

T qj = 0 if i

π j, then they are said to be orthogonal. Taking this a step further, an or-
thogonal matrix is also orthonormal. Each vector qi is orthonormal if the
length of qi = 1, denoted by �qi � = 1, which means q

i

T qi = 1. Because the vec-
tors [q1, q2, … , qn] in matrix Q are orthonormal, they point in totally differ-
ent directions, forming 90-degree angles between each and every vector.
Moreover, the vectors in Q from an orthonormal basis for a vector space,
meaning every vector in the vector space can be written as a linear combi-
nation of vectors [q1, q2, … , qn]. More specifically, the vectors [q1, q2, … , qn]
span the vector space and are linearly independent, that is, c1q1 + c2q2 + … +
cnqn = 0 if and only if the scalars ci = 0 (Golub & Van Loan, 1989).

There is more than one method for decomposing the type-by-document
matrix A into orthogonal components. One method is the QR factorization,
which is described in detail in Berry and Browne (2005) and Berry et al.
(1999), another method called the ULV low-rank orthogonal decomposi-
tion is described in detail in Berry and Fierro (1996), and yet another
method called the semi-discrete decomposition (SDD) is described in detail
in Kolda and O’Leary (1998). Whereas all these methods are viable options,
the most popular method used by LSA to decompose the type-by-docu-
ment input matrix A is the singular value decomposition (SVD). The SVD is
generally the chosen orthogonal matrix decomposition of input matrix A
for various reasons. First, the SVD decomposes A into orthogonal factors
that represent both types and documents. Vector representations for both
types and documents are achieved simultaneously. Second, the SVD suffi-
ciently captures the underlying semantic structure of a collection and al-
lows for adjusting the representation of types and documents in the vector
space by choosing the number of dimensions (more on this later). Finally,
the computation of the SVD is manageable for large datasets, especially

40 MARTIN AND BERRY

P A G E P R O O F S

now with current computer architectures (including clusters and
symmetric multiprocessors; Berry & Martin, 2005).

The SVD for a m × n type-by-document input matrix A as described earlier,
with the rank (number of vectors in the basis of the column space or the vector
subspace spanned by the column vectors) of A = r, is defined as follows:

A = U VT 2.2

where U is an orthogonal matrix (UTU = Im), V is an orthogonal matrix (VTV =

In), and is a diagonal matrix (= diagonal(s1, s2, …, sn) with the remaining
matrix cells all zeros [Golub & Van Loan, 1989]). The first r columns of the or-
thogonal matrix U contain r orthonormal eigenvectors associated with the r
nonzero eigenvalues1 of AAT. The first r columns of the orthogonal matrix V
contain r orthonormal eigenvectors associated with the r nonzero eigenvalues
of ATA. The first r diagonal entries of S are the nonnegative square roots of the r
nonzero eigenvalues of AAT and ATA. The rows of matrix U are the type vec-
tors and are called left singular vectors. The rows of V are the document vec-
tors and are called right singular vectors. The nonzero diagonal elements of
are known as the singular values (Berry, Dumais, & O’Brien, 1995).

Truncation of Orthogonal Components

A pictorial representation of the SVD of input matrix A and the best rank-k
approximation to A can be seen in Figure 2.1 (Berry et al., 1995; Witter &
Berry, 1998). Given the fact that A can be written as the sum of rank 1 matri-

2. MATHEMATICAL FOUNDATIONS 41

Figure 2.1. Diagram of the truncated SVD.

1As defined in Larson and Edwards (1988), an eigenvector and eigenvalue of the matrix A
satisfy Ax= x, where x is an eigenvector and l is its corresponding eigenvalue. Two properties
of eigenvectors and eigenvalues that play a role in the SVD computation are that all
eigenvalues of a symmetric matrix (BT = B) are real, and the eigenvectors associated with each
distinct eigenvalue for a symmetric matrix are orthogonal.

P A G E P R O O F S

ces (Björck, 1996): A =
=
Âu v

i
i

r

i i

T

1

s , r can be reduced to k to create

A
k i

i

k

i i

Tu v=
=
Â

1

s . The matrix Ak is the best or closest (distance is minimized)

rank k approximation to the original matrix A (Björck, 1996; Berry &
Browne, 2005; Berry et al., 1995; Berry et al., 1999). The matrix Ak (Ak =

UkSkV k

T) is created by ignoring or setting equal to zero all but the first k ele-

ments or columns of the type vectors in U, the first k singular values in S,
and the first k elements or columns of the document vectors in V. The first k
columns of U and V are orthogonal, but the rows of U and V, the type and
document vectors, consisting of k elements are not orthogonal. By reducing
the dimension from r to k, extraneous information and variability in type
usage, referred to as “noise,” which is associated with the database or docu-
ment collection is removed. Truncating the SVD and creating Ak is what
captures the important underlying semantic structure of types and docu-
ments. Types similar in meaning are “near” each other in k-dimensional
vector space even if they never co-occur in a document, and documents
similar in conceptual meaning are near each other even if they share no
types in common (Berry et al., 1995). This k-dimensional vector space is the
foundation for the semantic structures LSA exploits.

Using the small document collection from Table 2.1 and its corresponding
type-by-document matrix in Tables 2.2 and 2.3, the SVD can be computed and
truncated to a two-dimensional vector space by reducing the rank to k = 2. Ta-
ble 2.4 shows the SVD of the example type-by-document matrix given in Table
2.3. The values in the boldface cells in the type matrix U, the document matrix
V, and the diagonal matrix of singular values are used to encode the repre-
sentations of types and documents in the two-dimensional vector space.

Figure 2.2 shows a rank-2, k = 2, plot of the types, represented by squares,
and documents, represented by triangles, in the music and baking titles col-
lection. Each point represents a type or document vector, a line starting at
the origin and ending at a defined type or document point. The (x, y) pair is
defined by x = first dimension or column of matrix U or V multiplied by the
first singular value and y = second dimension or column of matrix U or V
multiplied by the second singular value for type and document points, re-
spectively. Looking at the vectors for the types and documents, the types
most similar to each other and the documents most similar to each other are
determined by the angles between vectors (more on this in the Querying
subsection). If two vectors are similar, then they will have a small angle be-
tween them. In Figure 2.2, the documents M4, “A Perspective of Rock Mu-
sic in the 90’s,” and M1 “Rock and Roll Music in the 1960’s” are the closest
documents to document M3, “Drum and Bass Composition,” and yet they
share no types in common. Similarly, the type vector for “music” is closest

42 MARTIN AND BERRY

P A G E P R O O F S

to type vectors “rock” and “composition,” however, the next closest type
vector corresponds to the type vector for “drum.” This similarity is notable
because “music” and “drum” never co-occur in the same document.

The best selection of rank or number of dimensions to use in the space re-
mains an open question. In practice, the choice for k depends on empirical test-
ing. For large datasets, empirical testing shows that the optimal choice for the
number of dimensions ranges between 100 and 300 (Berry et al., 1999; Jessup &
Martin, 2001; Lizza & Sartoretto, 2001). As stated previously, whatever the
choice for k, the rank-k matrix, Ak, constructed by the truncated SVD factors,

2. MATHEMATICAL FOUNDATIONS 43

Figure 2.2. The rank-2 LSA vector space for the music/baking titles collection.

P A G E P R O O F S

44

TABLE 2.4
The SVD of the Weighted Type-by-Document Matrix Represented in Table 2.3

Matrix U-Type Vectors

Bread .42 –.09 –.20 .33 –.48 –.33 .46 –.21 –.28

Composition .04 –.34 .09 –.67 –.28 –.43 .02 –.06 .40

Demonstration .21 –.44 –.42 .29 .09 –.02 –.60 –.29 .21

Dough .55 .22 .10 –.11 –.12 .23 –.15 .15 .11

Drum .10 –.46 –.29 –.41 .11 .55 .26 –.02 –.37

Ingredients .35 .12 .13 –.17 .72 –.35 .10 –.37 –.17

Music .04 –.35 .54 .03 –.12 –.16 –.41 .18 –.58

Recipe .55 .22 .10 –.11 –.12 .23 –.15 .15 .11

Rock .05 –.33 .60 .29 .02 .33 .28 –.35 .37

Roll .17 –.35 –.05 .24 .33 –.19 .25 .73 .22

Matrix S-Singular Values

1.10 0 0 0 0 0 0 0 0

0 .96 0 0 0 0 0 0 0

0 0 .86 0 0 0 0 0 0

0 0 0 .76 0 0 0 0 0

0 0 0 0 .66 0 0 0 0

0 0 0 0 0 .47 0 0 0

0 0 0 0 0 0 .27 0 0

0 0 0 0 0 0 0 .17 0

0 0 0 0 0 0 0 0 .07

0 0 0 0 0 0 0 0 0

Matrix V-Document Vectors

M1 .07 –.38 .53 .27 .08 .12 .20 .50 .42

M2 .17 –.54 –.41 .00 .28 .43 –.34 .22 –.28

M3 .06 –.40 –.11 –.67 –.12 .12 .49 –.23 .23

M4 .03 –.29 .55 .19 –.05 .22 –.04 –.62 –.37

M5 .03 –.29 .27 –.40 –.27 –.55 –.48 .21 –.17

B1 .31 –.36 –.36 .46 –.15 –.45 .00 –.32 .31

B2 .19 –.04 .06 –.02 .65 –.45 .41 .07 –.40

B3 .66 .17 .00 .06 –.51 .12 .27 .25 –.35

B4 .63 .27 .18 –.24 .35 .10 –.35 –.20 .37

P A G E P R O O F S

produces the best approximation to the type-by-document input matrix A, al-
ways. Keep in mind that this does not equate to the optimal number dimen-
sions to use in certain applications; meaning one should not always use the
first 100–300 dimensions. For some applications it is better to use a subset of
the first 100 or 300 dimensions or factors (Landauer & Dumais, 1997).

COMPUTING THE VECTOR SPACE MODEL
FOR LATENT SEMANTIC ANALYSIS

Solving an Eigenproblem

Computing the reduced dimensional vector space for a given type-by-doc-
ument input matrix is a nontrivial calculation. Given a realistic, large m × n

type-by-document matrix A where m ≥ n, computing the SVD becomes a
problem of finding the k largest eigenvalues and eigenvectors of the matrix
B = ATA. Finding the eigenvectors of B produces the document vectors (re-
call from the Decomposition of Input Matrix into Orthogonal Components
subsection the columns of orthogonal matrix V in the SVD are the
eigenvectors of B), and finding the eigenvalues of B produces the singular
values (the nonnegative square roots of the eigenvalues of B). The type vec-
tors are produced by back multiplying, U AV

k
=

k k

–1S . If n > m, there are
more documents than types, then computing the SVD is reduced to finding
the k largest eigenvalues and eigenvectors of B = AAT. In this case, finding
the eigenvectors of B produces the type vectors (recall from the Decomposi-
tion of Input Matrix into Orthonal Components subsection the columns of
orthogonal matrix U in the SVD are the eigenvectors of B), and again find-
ing the eigenvalues of B produces the singular values (the nonnegative
square roots of the eigenvalues of B). As with type vectors in the previous
case, the document vectors are produced by back multiplying,
V A U

k k
= T

k

–1S . To summarize, given the symmetric matrix B, which is cre-
ated from the sparse input matrix A, the objective is to find the k largest
eigenvalues and eigenvectors of B. Thus, the SVD computation is based on
solving a large, sparse symmetric eigenproblem (Berry, 1992; Golub & Van
Loan, 1989).

Basic Lanczos Algorithm

The Lanczos algorithm is proven to be accurate and efficient for large,
sparse symmetric eigenproblems where only a modest number of the larg-
est or smallest eigenvalues of a matrix are desired (Golub & Van Loan, 1989;
Parlett & Scott, 1979). The Lanczos algorithm, which is an iterative method

2. MATHEMATICAL FOUNDATIONS 45

P A G E P R O O F S

and most often used to compute the k largest eigenvalues and eigenvectors
of B, actually approximates the eigenvalues of B (Berry & Martin, 2005).

The Lanczos algorithm involves the partial tridiagonalization of matrix
B, where a tridiagonal matrix is defined as follows:

T =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-

a b

b a b

b a

1 1

1 2 2

1

0 0
0

0 0

K K

K

K K K K

K
v v

2.3

where Tij = 0 whenever |i – j| > 1 (Parlett, 1980). A tridiagonal matrix T is
considered unreduced if bi π 0, i = 1, … , v – 1. A sequence of symmetric
tridiagonal matrices Tj is generated by the algorithm with the property that
eigenvalues of Tj are progressively better estimates of B’s largest (or small-
est) eigenvalues (Berry, 1992). These eigenvalues emerge long before
tridiagonalization is complete, before the complete v × v tridiagonal matrix
is produced. There are important reasons for transforming matrix B to an
unreduced tridiagonal matrix. First, eigenvalues and eigenvectors of T can
be found with significantly fewer arithmetic operations than for B. Second,
every symmetric matrix B can be reduced to T by a finite number of elemen-
tary orthogonal transformations (QTBQ = T). Finally, as long as T is
unreduced, T’s eigenvalues are distinct; there are not multiple eigenvalues
with the same value (Parlett, 1980).

Step 1 of the Lanczos algorithm is to tridiagonalize the symmetric matrix
B. To compute Tj = QTBQ, define the orthogonal matrix Q = [q1, q2, … , qj]
where the vectors qi, known as the Lanczos vectors, are orthonormal vec-
tors. To reduce B to a tridiagonal matrix step by step, the vectors for Qj and
the entries of Tj are computed one column at a time by the following the ba-
sic Lanczos recursion (Parlett, 1980; Parlett & Scott, 1979):

1. Generate a random vector q1 such that it is orthonormal (�q1 � = 1).
2. Define b0 ∫ 0 and q0 ∫ 0.
3. Recursively do the following for j = 1, 2, … , l:

rj = Bqj – qj-1bj-1;
aj = q

j

T rj = q
j

T × (Bqj – qj-1bj-1) = q
j

T Bqj,

where q j
T qj-1bj-1 = 0 due to orthogonality;

rj = rj - qjaj;
bj = �rj �, where �rj � is the vector length of rj;

q
r r

r
j

j

j

j

j

+ = =1 b
, where qj+1 becomes orthonormal.

46 MARTIN AND BERRY

P A G E P R O O F S

To determine aj, rj, bj and qj+1, at each step only bj, qj-1, and qj are needed.
There are two things to observe about the computations in the Lanczos al-
gorithm. First, by mathematical induction, it can be proven that the vectors
qi are uniquely determined by B and q1 (Parlett, 1980). Second, the vector
qj+1 (= Bqj – bj-1qj-1 – ajqj), before normalizing or dividing by bj = � rj � to
make its vector length equal to one, is built on the previous vectors qj-1 and
qj; therefore, the next Lanczos vector qj+1 is obtained by orthogonalizing Bqj

with respect to qj-1 and qj (Berry, 1992; Berry & Martin, 2005). This guaran-
tees the orthogonality of vectors qj in the matrix Q = [q1, q2, … , qj], and the
normalizing of each Lanczos vector guarantees that the vectors qj are
orthonormal. Given these two observations, the vectors in Qj form the
orthonormal basis for a subspace known as a Krylov subspace (Golub &
Van Loan, 1989; Parlett, 1980). A Krylov subspace is defined by the span of
{q1, q2, … , qj} = span of {q1, Bq1, … , Bj-1 q1}. Therefore, the span of {Qj} is a
Krylov subspace for the matrix B. The Lanczos procedure can be viewed as
a technique for computing orthonormal bases for the Krylov subspaces at
different j steps and for computing an orthogonal projection of B onto these
subspaces (Berry, 1992).

Step 2 of the Lanczos algorithm is to examine the eigenvalues for Tj at
various steps j to see if they are good approximations to the eigenvalues of
B. This is done by diagonalizing the tridiagonal matrix Tj and finding its
eigenvalues and eigenvectors (remember an eigenvalue lk and its corre-
sponding eigenvector xk associated with Tj satisfy Tjxk = lkxk). Let Tj =
SjQjS

T
j, where Sj = [s1,… , sj] is a j × j orthogonal matrix and Qj = diag (q1, … ,

qj) is a diagonal matrix. The eigenvalues, lk = qk (k = 1, 2, … , j), and
eigenvectors, xk = Qjsk (k = 1, 2, … , j), of Tj are produced by the following
derivation:

since QT
jBQj = Tj = SjQj, S

j

T

then (QjSj)
TB(QjSj) = Qj or

B(QjSj) = Qj(QjSj).

An eigenpair (lk, xk) for Tj is known as a Ritz pair, where the eigenvalue lk is
called a Ritz value, and the eigenvector xk is called a Ritz vector (Golub &
Van Loan, 1989; Parlett, 1980). These Ritz pairs are the best set of approxi-
mations to the desired eigenpairs of B (Parlett, 1980). The accuracy of these
approximations has been studied in great depth by Kaniel and Saad (Berry,
1992; Parlett, 1980), and they conclude that the eigenvalues of Tj are good
approximations to the extreme, largest or smallest, eigenvalues of B. This
accuracy is determined by examining the residual norm, �Bxk – lkxk �, of
each Ritz pair. The residual norm can be calculated without constructing xk

(k = 1, 2, … , j) by simply taking the bottom elements of the normalized

2. MATHEMATICAL FOUNDATIONS 47

2.4

P A G E P R O O F S

eigenvectors, sk (k = 1, 2, … , j), of Tj (Parlett, 1980). If the accuracy of an
eigenvalue of Tj is sufficient, then step 3 of the Lanczos algorithm is to com-
pute the eigenvectors, xk (k = 1, 2, … , j), of Tj. Once an accepted eigenpair of
B is determined, a singular vector and singular value have been found. This
is considered step 4 of the Lanczos algorithm. If B = ATA, then a right singu-
lar vector has been found, and if B = AAT then a left singular vector has been
found. Table 2.5 outlines the basic steps of the Lanczos algorithm for com-
puting the sparse SVD of input matrix A.

Lanczos Algorithm With Selective Reorthogonalization

Theoretically, it is easy to prove (and as already explained) that the basic
Lanczos recursion guarantees orthogonality among all vectors in matrix Q
= [q1, q2, … , qj] by only orthogonalizing the current Lanczos vector with the
previous two Lanczos vectors (Parlett, 1980). However, in using finite-pre-
cision arithmetic, the Lanczos procedure suffers from the loss of
orthogonality in the Lanczos vectors. This leads to “numerically multiple”
eigenvalues, the same eigenvalue calculated multiple times, and unwanted
eigenvalues of Tj . There are a few options for dealing with these problems.
One is to use total reorthogonalization where every Lanczos vector is
orthogonalized against all previously generated Lanczos vectors. This ap-
proach requires a great deal of storage and many arithmetic operations and
can complicate the Lanczos process. Another option is to disregard the loss
in orthogonality among Lanczos vectors and deal with these problems di-
rectly, but in practice it is difficult to keep track of unwanted or “numeri-
cally multiple” eigenvalues. Currently, the best option for remedying these
problems is to use selective reorthogonalization of the Lanczos vectors,
which is known as the “Lanczos algorithm with selective
reorthogonalization” (Berry, 1992; Parlett, 1980; Parlett & Scott, 1979). In

48 MARTIN AND BERRY

TABLE 2.5
Lanczos Algorithm for Computing the Sparse SVD

1. Use the basic Lanczos recursion to generate a sequence of symmetric
tridiagonal matrices, Ti (i = 1, 2, …, p).

2. For some j £ p, compute the eigenvalues of Tj. Determine which eigenvalues
of Tj are good approximations to the eigenvalues of B.

3. For each accepted eigenvalue, or Ritz value, lk compute its corresponding
eigenvector, or Ritz vector, xk, where xk = Qjsk. The set of Ritz pairs are used as an
approximation to the desired eigenvalues and eigenvectors of matrix B.

4. For all accepted eigenpairs (lk, xk) compute the corresponding singular vec-
tors and values for type-by-document input matrix A.

P A G E P R O O F S

this method, the Lanczos vectors are periodically reorthogonalized against
the previous ones whenever a threshold for mutual orthogonality is ex-
ceeded (Berry & Martin, 2005). In a comparison study among several algo-
rithms, it was found that the Lanczos algorithm using selective
reorthogonalization was the fastest method for computing k of the largest
singular vectors and corresponding singular values (Berry, 1992). With a re-
cent parallel/distributed implementation of the Lanczos algorithm using
selective reorthogonalization, the capacity to handle larger data collec-
tions, and thus input matrices, is now feasible (Berry & Martin, 2005). The
time and storage burden of transforming a type-by-document input matrix
into singular vectors and values has been reduced, increasing the suitabil-
ity of this algorithm for computing the SVD.

USING THE VECTOR SPACE MODEL FOR LATENT
SEMANTIC ANALYSIS

Querying

Once a reduced rank, or k-dimensional, vector space for types and docu-
ments has been produced, finding types and documents close to a given
query becomes a simple process. A query is represented in the k-dimen-
sional vector space much like a document; therefore, it is referred to as a
pseudo-document (Deerwester et al., 1990). A query is the weighted sum of
its type vectors scaled by the inverse of the singular values, this individu-
ally weights each dimension in the k-dimensional type-document vector
space. A query can be represented by

query T

k
= q U S

k

–1 2.5

where qT is vector containing zeros and weighted type frequencies corre-
sponding to the types specified in the query. The weighting is determined
by applying one of the weighting functions described in the Input Matrix
subsection.

Once a pseudo-document is formed and projected into the type-docu-
ment space, a similarity measure is used to determine which types and doc-
uments are closest to the query. The cosine similarity measure is commonly
used, and the cosine angle between the query, or pseudo-document, and
each of the documents or types is computed. The cosines and the corre-
sponding documents or types are then ranked in descending order; thus,
the document or type with the highest cosine with the query is given first.
Once the ranked list is produced, documents or types above a certain
threshold are then deemed relevant (Letsche & Berry, 1997).

2. MATHEMATICAL FOUNDATIONS 49

P A G E P R O O F S

Referring back to the small music/baking titles collection example given
in the Creating the Vector Space Model for Latent Semantic Analysis sec-
tion, the query “Recipe for White Bread” can be computed as a pseudo-doc-
ument and projected into the rank-2 space in Figure 2.2. Calculating the
cosines of the query vector with each document vector, a ranked list of the
largest cosines is shown in Table 2.6. Given a cosine threshold of greater
than .80, documents B2, B3, B1, and B4 are the most relevant. Document B2,
“Ingredients for Crescent Rolls,” is found to be the most relevant to the
query “Recipe for White Bread,” even though this document has no types
in common with the query.

One way to enhance a query and thereby retrieve relevant documents is
to apply a method known as relevance feedback (Salton & Buckley, 1990).
Given the query and the initial ranked list of documents and their corre-
sponding cosines with the query, relevance feedback allows users to indi-
cate which documents they think are relevant from the initial list. The query
with the incorporation relevance feedback is represented by

query T

k k

T

k
= +q U d VS –1 2.6

where dT is a vector whose elements specify which documents to add to the
query (Letsche & Berry, 1997). Again, this query is matched against the doc-
uments to obtain a ranked list of documents.

There are three sorts of comparisons that can be done in the vector space:
comparing two types, comparing two documents, and comparing a type to a
document. By definition, a query is considered a document, a pseudo-docu-
ment; therefore, the comparison between two documents is the same as com-
paring a pseudo-document and a document. The same is true when
comparing a document and a type. The analysis on these three types of com-
parisons was first described in Deerwester et al. (1990) and is presented here.

To find the degree of similarity between type i and type j, the dot product
between row vectors in Ak is examined. Given the reduced matrix Ak =
UkSkV k

T , the dot product between any two type vectors reflects the similar-

50 MARTIN AND BERRY

TABLE 2.6
Results for the Query “Recipe for White Bread” Using a Cosine Threshold of .80

Document Cosine

B2: Ingredients for Crescent Rolls .99800

B3: A Recipe for Sourdough Bread .90322

B1: How to make Bread and Rolls, a Demonstration .84171

B4: A Quick Recipe for Pizza Dough using Organic Ingredients .83396

P A G E P R O O F S

ity of types in the document collection. Therefore, if the (square) similarity
matrix to obtain all the type-to-type dot products is defined as

AkA k
T = UkSkV k

T (UkSkV k
T)T = UkSkV k

T VkSkU k
T = UkSkSkU k

T 2.7

then the dot product between any two types is the dot product between row i

and j of UkSk. Therefore, to perform a comparison in k-dimensional vector
space between any two types, the type vectors scaled by the singular values
are used to compute the similarity measure regardless of whether the similar-
ity measure used is the cosine, Euclidean distance, or some other measure.

The comparison of two documents follows the same analysis. To determine
the degree of similarity between two documents, the dot product between col-
umn vectors is examined. Given the reduced matrix Ak = UkSkV k

T , the dot
product between any two document vectors indicates the extent to which two
documents have similar type patterns or type meanings. If the (square) simi-
larity matrix to compute all the document-to-document dot products is cre-
ated by

A k
T Ak = (UkSkV k

T)TUkSkV k
T = VkSkU k

T UkSkV k
T = VkSkSkV k

T 2.8

then the dot product between any two documents is the dot product be-
tween row i and j of VkSk. Therefore, to do a comparison between any two
documents, or a document and a pseudo-document, the document vectors,
or pseudo-document vector, scaled by the singular values are used to com-
pute the similarity measure.

The comparison between a type and a document is different than the
comparison between any two types or any two documents. In this case, the
comparison is analyzed by looking at an element of Ak. Remember that the
reduced rank matrix is defined as Ak = UkSkV k

T , and the element aij of Ak is
obtained by taking the dot product of row vector i in Uk scaled by S

k
and

the row vector j in Vk scaled by S
k

. Thus, following the same procedure as
with types and documents, when computing a comparison, regardless of
similarity measure used, between a type and a document or pseudo-docu-
ment, the corresponding type vector and document vector scaled by the
square root of the singular values are needed.

Updating

The ability to add new types and documents to the reduced rank type-doc-
ument vector space is important because the original information in the
document collection oftentimes needs to be augmented for different con-
textual or conceptual usages. One of three methods, “folding-in,” recom-

2. MATHEMATICAL FOUNDATIONS 51

P A G E P R O O F S

puting the SVD, or SVD-updating, described in Berry et al. (1995) is
generally used when updating or adding new types or documents to an ex-
isting vector space. However, to date, there is no optimal way to add infor-
mation to an existing type-document space that is more accurate than
recomputing the k-dimensional vector space with the added information
while directly and accurately affecting the underlying latent structure in
the document collection.

The simple way of handling the addition of types and documents is to
“fold” types or documents into the k-dimensional vector space. The “fold-
ing-in” procedure is based on the existing type-document vector space. As
with querying, to fold-in a document, a pseudo-document is built. A new
document, d, is folded into the existing k-dimensional vector space by pro-
jecting d onto the span of the current type vectors by computing
d d Unew k k

= T S –1 . The vector d, representing a document, contains zero and
nonzero elements where the nonzero elements correspond to the type fre-
quencies contained in the document adjusted by a weighting function de-
scribed in the Input Matrix subsection. Similarly, to fold a new type vector,
t, into an existing k-dimensional vector space, a projection of t onto the
space of the current document vectors is computed byt tVnew k k

= S –1 . In this
case, the vector t contains zero and nonzero elements where the nonzero el-
ements are weighted elements corresponding to the documents that con-
tain the type. Both the vectors of dnew and tneware added to the vector space as
another document and type, respectively. This method is a quick and easy
way to add new types and documents to a vector space, but by no means
does it change the existing type-document vector space. Essentially the
new types and documents have no effect on the underlying semantic struc-
ture or meanings of types and documents.

The best way to produce a k-dimensional type-document vector space
with new types and documents playing a role in the meanings of types and
documents is to reproduce the type-by-document matrix with the added
types and documents, recompute the SVD, and regenerate the reduced
rank vector space. The exact effects of adding those specific types or docu-
ments are reflected in the vector space. Of course, the expense of this
method is time. Although time efficient ways of calculating the SVD are be-
ing developed, recomputation is still computationally intensive (Berry &
Martin, 2005).

One algorithm that has been proposed in literature as an alternative to
folding in and recomputing the SVD is the SVD-updating algorithm (Berry
et al., 1995). Performing the SVD-updating technique requires three steps:
adding new documents, adding new types, and correcting for changes in
type weightings. All steps use the reduced rank vector space, Ak, to incor-
porate new types or documents into the existing type-document space by
exploiting the previously computed singular vectors and values. This tech-

52 MARTIN AND BERRY

P A G E P R O O F S

nique is definitely more difficult and more computationally complex than
folding-in, but it does guarantee the orthogonality of vectors among the ex-
isting and new type and document vectors. Although the SVD-updating
technique does try and mimic the effects of new types and documents on
the underlying semantic structure, it will deviate somewhat from the actual
recomputation of the reduced rank space using the same data because the
update is based on Ak and not an original type-by-document matrix A
(Berry et al., 1995). An updating method, which is guaranteed to match the
results of a recomputed SVD, is given in Zha and Simon (1999).

Downdating

Following the same argument as updating, the ability to remove types and
documents from a reduced rank vector space is also important because
there are times when the original information in a document collection
needs to be diminished for different contextual and conceptual usages.
Again there are three methods—“folding-out,” recomputing the SVD, or
“downdating the reduced model” method—used in downdating or re-
moving a type or document from an existing vector space. However, as
with updating, to date there is no way to remove information from an exist-
ing type-document space that accurately affects the underlying semantic
structure of a document collection and is more expedient than recomputing
the original k-dimensional vector space.

The simplest method for removing information from a type-document
vector space is “folding-out” of types or documents. This technique simply
ignores the unwanted types and documents as if they were absent from the
vector space and thus the document collection. The types and documents
are no longer used in comparisons.

Of course, the method of removing types or documents from a docu-
ment collection, reproducing the type-by-document matrix, recomputing
the SVD, and regenerating the k-dimensional vector space is always an op-
tion. Recreating the type-document vector space with certain types and
documents removed is definitely the most accurate in showing the effects
of the removed information on the underlying semantic structure of the
original database. As stated in the Updating subsection, this requires
computational complexity and time.

One other algorithm, described in Witter and Berry (1998), called
downdating the reduced model (DRM), tries to reflect the change that re-
moving types and documents has on the reduced rank vector space with-
out recomputing the SVD as a new type-by-document vector space. This
technique involves three steps: removing a type, removing a document,
and updating type weights from the reduced rank vector space Ak. The pre-

2. MATHEMATICAL FOUNDATIONS 53

P A G E P R O O F S

viously calculated singular vectors and values are used in downdating the
vector space. This algorithm approximates the effects that removing types
and documents have on the reduced rank vector space, and it maintains
orthogonality among the existing and new type and document vector col-
umns. The DRM method is not as accurate as recomputing the vector space,
but it is more accurate than folding-out. But likewise it is also
computationally more time efficient than recomputing the vector space but
much slower that folding-out.

CONCLUSIONS

Latent semantic analysis (LSA) uses a reduced rank vector space model to
exploit the latent semantic structure of type-document associations. As evi-
denced by this chapter, creating, calculating, and using the reduced rank
vector space model is nontrivial and based on sophisticated numerical al-
gorithms. The mathematical foundations laid out in this chapter are the ba-
sis for which the applications of LSAare built on. The remaining chapters of
this volume describe the various LSA applications and manipulations that
exploit the reduced rank vector space model and structure.

REFERENCES

Berry, M. W. (1992). Large sparse singular value computations. International Journal
of Supercomputer Applications, 6, 13–49.

Berry, M. W., & Browne, M. (2005). Understanding search engines: Mathematical model-
ing and text retrieval (2nd ed.). Philadelphia: SIAM.

Berry, M. W., & Drmac, Z., & Jessup, E. (1999). Matrices, vector spaces, and informa-
tion retrieval. SIAM Review, 41, 335–362.

Berry, M. W., Dumais, S., & O’Brien, G. (1995). Using linear algebra for intelligent in-
formation retrieval. SIAM Review, 37, 573–595.

Berry, M. W., & Fierro, R. (1996). Low-rank orthogonal decompositions for informa-
tion retrieval applications. Numerical Linear Algebra With Applications, 3, 301–327.

Berry, M. W., & Martin, D. (2005). Principle component analysis for information re-
trieval. In E. Kontoghiorghes (Series Ed.), Statistics: A series of textbooks and mono-
graphs: Handbook of parallel computing and statistics (pp. 399–413). Boca Raton, FL:
Chapman & Hall/CRC.

Björck, Å. (1996). Numerical methods for least squares problems. Unpublished manu-
script, Linköping University, Linköping, Sweden.

Buckley, C., Allan, J., & Salton, G. (1994). Automatic routing and ad-hoc retrieval us-
ing SMART: TREC 2. In D. Harman (Ed.), Proceedings of the Second Text Retrieval
Conference TREC-2 (National Institute of Standards and Technology Special Pub-
lication No. 500–215, pp. 45–56). Gaithersburg, MD: NIST.

Deerwester, S., Dumais, S., Furnas, G., Landauer, T., & Harshman, R. (1990). Index-
ing by latent semantic analysis. Journal of the American Society for Information Sci-
ences, 41, 391–407.

54 MARTIN AND BERRY

P A G E P R O O F S

Dumais, S. (1991). Improving the retrieval of information from external sources. Be-
havior Research Methods, Instruments, and Computers, 23, 229–236.

Furnas, G., Landauer, T., Gomez, L., & Dumais, S. (1987). The vocabulary problem in
human–system communication. Communications of the ACM, 30, 964–971.

Golub, G., & Van Loan, C. F. (1989). Matrix computations (2nd ed.). Baltimore: Johns
Hopkins Unversity Press.

Jessup, E., & Martin, J. (2001). Taking a new look at the latent semantic analysis ap-
proach to information retrieval. In M. W. Berry (Ed.), Computational information
retrieval (pp. 121–144). Philadelphia: SIAM.

Kolda, T. G., & O’Leary, D. P. (1998). Asemi-discrete matrix decomposition for latent
semantic indexing in information retrieval. ACM Transactions on Information Sys-
tems, 16, 322–346.

Landauer, T., & Dumais, S. (1997). Asolution to Plato’s problem: The latent semantic
analysis theory of acquisition, induction, and representation of knowledge. Psy-
chological Review, 104, 211–240.

Larson, R., & Edwards, B. (1988). Elementary linear algebra. Lexington, MA: Heath.
Letsche, T., & Berry, M. W. (1997). Large-scale information retrieval with latent se-

mantic indexing. Information Sciences, 100, 105–137.
Lizza, M., & Sartoretto, F. (2001). A comparative analysis of LSI strategies. In M. W.

Berry (Ed.), Computational information retrieval (pp. 171–181). Philadelphia:
SIAM.

Parlett, B. (1980). The symmetric eigenvalue problem. Englewood Cliffs, NJ:
Prentice-Hall.

Parlett, B., & Scott, D. (1979). The Lanczos algorithm with selective
reorthogonalization. Mathematics of Computation, 33, 217–238.

Salton, G., & Buckley, C. (1990). Improving retrieval performance by relevance feed-
back. Journal of the American Society for Information Sciences, 41, 288–297.

Salton, G., & Buckley, C. (1991). Automatic text structuring and retrieval—experi-
ments in automatic encyclopedia searching. Proceedings of the 14th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 21–30.

Salton, G., Buckley, C., & Allan, J. (1992). Automatic structuring of text files. Elec-
tronic Publishing, 5, 1–17.

Salton, G., & McGill, M. (1983). Introduction to modern information retrieval. New
York: McGraw-Hill.

Witter, D., & Berry, M. W. (1998). Downdating the latent semantic indexing model
for conceptual information retrieval. The Computer Journal, 41, 589–601.

Zha, H., & Simon, H. (1999). On updating problems in latent semantic indexing.
SIAM Journal of Scientific Computing, 21, 782–791.

2. MATHEMATICAL FOUNDATIONS 55

